Considerably strong magnetodielectric coupling in zircon-type DyVO₄

Cite as: AIP Conference Proceedings 2265, 030435 (2020); https://doi.org/10.1063/5.0017210 Published Online: 05 November 2020

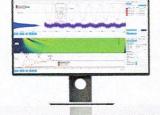
K. Dey, and S. Giri

ARTICLES YOU MAY BE INTERESTED IN

Single crystal growth and structural characterization of Bi_{1.8}Sb_{0.2}Te_{1.5}Se_{1.5} (BSTS) single crystal

AIP Conference Proceedings 2265, 030423 (2020); https://doi.org/10.1063/5.0017664

Magnetic field induced discontinuous spin reorientation in ErFeO₃ single crystal Applied Physics Letters 103, 192404 (2013); https://doi.org/10.1063/1.4829468


Anisotropic behaviour of the magnetization of DyVO₄ in the basal plane under Jahn-Teller distortion

Journal of Applied Physics 49, 1386 (1978); https://doi.org/10.1063/1.325000

Challenge us.

What are your needs for periodic signal detection?

Sardha Sala

AIP Conference Proceedings 2265, 030435 (2020); https://doi.org/10.1063/5.0017210 © 2020 Author(s).

2265, 030435

Principal
S.B.S.S. Mahavidyalaya
Goaltere, Paschim Medininur

Considerably Strong Magnetodielectric Coupling in Zircontype DyVO₄

K. Dey^{1, 2, a)} and S. Giri¹

¹School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
² Department of Physics, S.B.S.S. Mahavidyalaya, Goaltore, 721128, India

a) Corresponding author: koushikdev.iacs@gmail.com

Abstract. We investigate the magnetic and dielectric properties of zircon-type DyVO₄. The evidence of dielectric anomaly at the Jahn-Teller (JT) transition temperature (T_D) in DyVO₄ points a direct consequence of the onset of an electric polarization. We also report that the JT domain control gives rise to a remarkable magnetodieletric (MD) coupling, which is probably maximum in the RVO₄ series. MD coupling scales linearly with the squared magnetization as described by the Ginzburg-Landau theory.

INTRODUCTION

Recently, the RVO_4 (R = rare-earth) compounds have received renewed attention for their unusual magnetic properties [1, 2]. These materials usually crystallize in the zircon-type structure with space group I4₁/amd for smaller ionic radius of R ion [3]. The crystal structure of this phase consists of VO_4 tetrahedra and RO_8 bisdisphenoid polyhedra. RO_8 units connect with one another along the a and b axes as depicted in Fig. 1. Along the c-axis, RO_8 alternately align with VO_4 units, as a result, the VO_4 units are spatially isolated by RO_8 polyhedra. The magnetic properties of RVO_4 are mainly determined by the 4f spin of R ion. Recent studies showed that some of the materials of RVO_4 family have a very high magnetocaloric effect in low temperature, which is technologically promising for cryogenic magnetic refrigeration [4, 5].

DyVO₄ is also a promising material with significant magnetic [5] and optical properties [6]. The zircon-type DyVO₄ is a typical example of showing the Jahn-Teller (JT) effect induced by the quadrupolar interaction. It undergoes the JT transition from the I4₁/amd tetragonal to an orthorhombic structure at T_D (~15 K), which is associated with the ordering of 4f quadrupole moments of the Dy³⁺ ions [7]. DyVO₄ also shows high magnetocaloric effect near the antiferromagnetic (AFM) ordering of Dy³⁺ moments and the structural transition associated with 4f ferroquadrupolar ordering of Dy³⁺ ion [5]. The structure analysis showed that quadropolar distortion in DyVO₄ also induces an antiferroelectric lattice distortion, and makes it promising for investigation of the multiferroic properties in details [7].

In this paper, we report magnetic and dielectric properties in zircon-type $DyVO_4$. We observe a strong magnetodielectric (MD) effect around the JT transition temperature of $DyVO_4$. MD coupling scales linearly to the squared magnetization indicating the presence of spontaneous electric polarization around T_D in $DyVO_4$.

DAE Solid State Physics Symposium 2019
AIP Conf. Proc. 2265, 030435-1-030435-4; https://doi.org/10.1063/5.0017210
Published by AIP Publishing. 978-0-7354-2025-0/\$30.00

030435-1

Principal
S.B.S.S. Mehavidyalaya
Goaltore, Paschim Medinipur

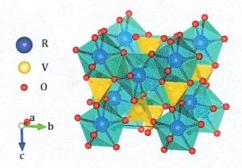


FIGURE 1. Zircon-type crystal structure of RVO4 at room temperature.

EXPERIMENTAL DETALS

The polycrystalline $DyVO_4$ is prepared using a solid-state reaction [4]. The single-phase chemical composition is confirmed by the x-ray diffraction studies at room temperature recorded in a Bruker D8 Advance powder diffractometer using the $Cu~K_\alpha$ radiation. The powder sample pressed into a pellet is used for the dielectric measurements using a E4980A LCR meter (Agilent Technologies, USA) equipped with a commercial PPMS evercool-II system of Quantum Design. The electrical contacts are fabricated using an air-drying silver paint. Magnetization is measured in a commercial magnetometer of Quantum Design (MPMS, evercool).

EXPERIMENTAL RESULTS AND DISCUSSIONS

The Rietveld refinement of the x-ray diffraction data of DyVO₄ at room temperature are shown in Fig. 2. The refinement is done using tetragonal structure with 14_1 /amd space group with atomic positions Dy (0,0,0), Cr (0,0,0.5), and O [0,0.0.1781(2),0.3375(6)]. The reliability parameters $R_w(\%)\sim3.92$, $R_{expt}(\%)\sim3.71$, and $\chi^2\sim1.38$ are reasonably small. The refined lattice parameter of the unit cell are a = 7.1461(2) and c = 6.3071(8) Å, which are close to the previously reported values [8]. The difference plot shown at the bottom confirms the single phase without trace amount of impurity.

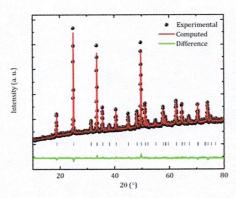


FIGURE 2. Rietveld refinement of x-ray powder diffraction patterns of DyVO₄ at room temperature.

The thermal variations of the zero-field cooled (ZFC) and field-cooled (FC) magnetization curves recorded at 100 Oe are depicted in Fig. 3(a). Both curves show a paramagnetic (PM) to AFM transition below $T_N \sim 3.5$ K due to the long-range ordering of the Dy³+ moments. No significant difference has been observed between ZFC and FC cycles. Analogous the previous reports, no signature of JT transition around 15 K is observed in the M(T) curve [5]. Figure 3(b) shows the magnetization curve [M(H)] at selected temperatures above and below T_N . The M(H) at 2 K increases rapidly above a critical field $B_C \sim 2.5$ kOe due to the metamagnetic transition from AFM to ferromagnetic (FM) state. The M(H) curve shows a saturating trend above 40 kOe indicating the FM nature above B_C . The nonlinear nature of

Principal
S.B.S.S. Mahavidyalaya
Gealtere, Paschim Medinipur

M(H) is observed at 12 K, which indicates the existence of short-range ordering due to the reported JT transition associated with 4f ferroquadrupolar ordering of Dy^{3+} ion. With further increasing the temperature the M(H) curve becomes linear in the PM state.

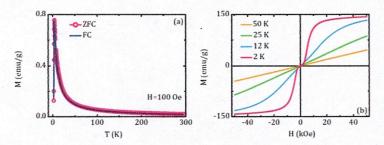


FIGURE 3. (a) T variation of ZFC-FC magnetization curves at 100 Oe. (b) Magnetization curves at selected temperatures.

The dielectric permittivity (ϵ) is recorded at different frequencies (f) by varying T for DyVO₄. Figure 4(a) depicts thermal variation of the real component (ϵ) of ϵ at different f. Inset of Fig. 4(a) clearly shows a Curie-type temperature dependence above T_D (~15 K) and a sudden drop below T_D , which is consistent with the results reported previously [9, 10]. The peak around T_D does not show any frequency dispersion. The dielectric anomaly observed at the JT transition temperature in DyVO₄ was understood as a direct consequence of the onset of an antiferroelectric ordering which is driven by the softening B_{lg} strain mode, i.e., as an optical-mode condensation without it's softening [9]. No signature around T_N is observed in ϵ '(T).

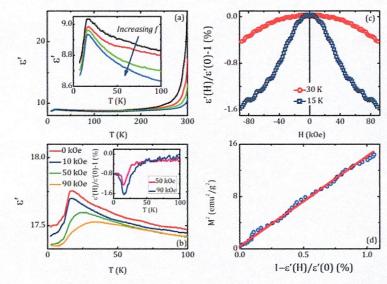
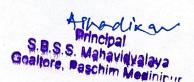



FIGURE 4. (a) T variation of ε ' at different f. (b) T variation of ε ' at different magnetic fields at f=2 kHz. (c) The H variation of $[\varepsilon'(H)/\varepsilon'(0)-1]$ at selected T. (d) The M² vs $-[[\varepsilon'(H)/\varepsilon'(0)-1](\%)]$ plots at 15 K up to 50 kOe magnetic field. Inset of (a) shows the $\varepsilon'(T)$ in low temperature region and (b) shows the variation of $\varepsilon'(H)/\varepsilon'(0)-1$ with T at H= 50 and 90 kOe.

The magnetization curve below T_D indicates the existence of short-range magnetic ordering above T_N . Figure 4(b) depicts the thermal variation of ϵ' at different applied magnetic fields. With increasing filed the peak at T_D depressed rapidly. The magnetodielectric (MD) response, defined as $\epsilon'(H)/\epsilon'(0)$ -1, is measured with T_D , as depicted in the inset of Fig. 4(b) at T_D and 90 kOe. The MD% value shows maximum around T_D for both the magnetic fields and we get 1.6% MD at T_D for 90 kOe applied field. This high value of MD is probably maximum in the RVO_4 series of compounds. The MD effect is further investigated with T_D and T_D . The MD effects as a function of magnetic field are shown in Fig. 4(c) at T_D and 30 K. The value of MD increases with T_D up to T_D at 90 kOe at 15 K. The MD effect relates the ME coupling, which can be phenomenologically expressed using the Ginzburg-

Landau theory through the ME coupling term $\gamma P^2 M^2$ in the thermodynamic potential (Φ) defined as,

$$\Phi = \Phi_0 + \alpha P^2 + \frac{\beta}{2} P^4 - PE + \alpha' M^2 + \frac{\beta'}{2} M^4 - MH + \gamma P^2 M^2$$
 (1)

Where α , β , α' , β' , and γ are the constants and functions of temperature. In the magnetically ordered state, the role of magnetic order on MD in a field is followed by the linear curve of M^2 versus $[\epsilon'(H)/\epsilon'(0)-1](\%)$ in the low-field region. Here, the M^2 versus $-[\epsilon'(H)/\epsilon'(0)-1](\%)$ plot at 15 K is depicted in Fig. 4(d). The result indicates that the ME coupling term $\gamma P^2 M^2$ of the Ginzburg-Landau theory [Eq. (1)] is significant up to 50 kOe magnetic field, which is similar as reported earlier for various magnetodieletric compounds [11, 12].

CONCLUSION

The above results demonstrate that the applied magnetic field rearranges the quadropolar moments of Dy³⁺ ions associated with the JT transition. As a result, the proposed antiferroelectric ordering near T_D is strongly affected by the applied magnetic field and gives a very promising MD effect. These results indicate that DyVO₄ may exhibit a good multiferroic nature around the JT transition temperature. Further studies in experimental and theoretical calculations are suggested for establishing a possible multiferroic order in DyVO₄.

ACKNOWLEDGMENTS

SG acknowledges SERB, DST, India, for the financial support (Project No.SB/S2/CMP-029/2014).

REFERENCES

- 1. P. Radhakrishna, J. Hammann and P. Pari, J. Magn. Magn. Mater. 23, 254 (1981).
- M. Moussa, M. Djermouni, S. Kacimi, M. Azzouz, A. Dahani and A. Zaoui, Comput. Mater. Sci. 68, 361–366 (2013).
- 3. M. J. Marttinez-Lope, J. A. Alonso, M. Retuerto and M. T. Fernandez-Diaz, Inorg. Chem. 47, 2634 (2008).
- K. Dey, A. Indra, S. Majumdar and S. Giri, J. Mater. Chem. C 5 (7), 1646-1650 (2017).
- 5. A. Midya, N. Khan, D. Bhoi and P. Mandal, Physica B 448, 4345 (2014).
- 6. J. C. Wright and H. W. Moos, J. Appl. Phys. 41, 1244-1245 (1970).
- 7. C. Detlefs, F. Duc, Z. A. Kaze, J. Vanacken, P. Frings, W. Bras, J. E. Lorenzo, P. C. Canfield, and G. L. J. A. Rikken, Phys. Rev. Lett. 100, 056405 (2008).
- 8. G. Will and W. Schafer, J. Phys. C: Solid St. Phys. 4, 811-819 (1971).
- 9. H. Unoki and T. Sakudo, Phys. Rev. Lett. 38, 137 (1977).
- 10. J. H. Page, D. R. Taylor and S. R. P. Smith, J. Phys. C: Solid State Phys. 17, 51-71 (1984).
- 11. A. Indra, K. Dey, J. K. Dey, S. Majumdar, U. Rütt, O. Gutowski, M. v. Zimmermann, and S. Giri, Phys. Rev. B 98, 014408 (2018).
- 12. K. Dey, A. Karmakar, A. Indra, S. Majumdar, U. Rutt, O. Gutowski, M. v. Zimmermann, and S. Giri, Phys. Rev. B 92, 024401 (2015).

Principal
S.B.S.S. Mahavidyalaya
Soaltere, Paschim Medinipur

64th DAE SOLID STATE PHYSICS SYMPOSIUM

Organized by: Bhabha Atomic Research Centre, Mumbai Sponsored by: Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India

CERTIFICATE OF PARTICIPATION

This is to certify that

K Dey

S.B.S.S. Mahavidyalaya, Goaltore

has presented a paper and participated in this Symposium, held at Indian Institute of Technology Jodhpur, Rajasthan during 18-22 December 2019

V. X. Sharme

Dr. Veerendra K. Sharma Scientific Secretary DAE SSPS 2019

Dated: 22 Dec 2019

चीमासीत प्रजापन

Dr. C. L. Prajapat Scientific Secretary DAE SSPS 2019 Md- Just

Prof. S. M. Yusuf Convener DAE SSPS 2019

Amadina

Principal
S.B.S.S. Mahavidyalaya
Goaltore, Paschim Mediniaur

