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Abstract : The problem of reflection of water waves by a rigid bended plate, in water of finite depth is considered in the present
analysis. Considering the effect of surface tension at the free surface, a simplified perturbational technique followed by
Havelock’s expansion [1] of water wave potential is applied to solve the problem, analytically, upto first order. For two special
shapes of the bended plate, first order corrections to the velocity potential and refection coefficient are obtained.
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I. INTRODUCTION

The present analysis is concerned with the problem of reflection of water waves involving a rigid bended plate in water of finite
depth assuming surface tension effect at the free surface. The problem of incoming water waves incident on a vertical cliff and few
of its generalization have been considered by some investigators for a long time [2-6]. However, existing literature on problems
including surface tension effect at the free surface are, in general complicated. Since then attempts have been made to study this
type of water of problems by employing different mathematical techniques [7-11].

However, very few attempts have been reported so far to study the problem involving a bended plate. The first problem in this
area has been tackled by Shaw [12] where he used a perturbation technique that involves the solution of a singular integral equation
to find the first order corrections to the reflection and transmission coefficients in connection with a surface piercing nearly vertical
barrier in deep water. Since then, some attempts have been made to study this class of water wave problem and few of its'
generalizations by employing different mathematical methods [12-15].

In the present paper, the problem under consideration is attacked for solution by a simplified perturbation analysis followed by
an appropriate Havelock's expansion of water wave potential. Corrections up to first order, for the reflection co-efficient as well as
the velocity potential are obtained in terms of an integral involving the shape function for finite depth of water in presence of
surface tension. Finally these are calculated explicitly by assuming two special shapes of the bended plate.

I1. FORMULATION OF THE PROBLEM

Cartesian co-ordinates are selected in which y-axis measured vertically downwards and assume that the water is bounded on the
left side by the bended plate x = £f (¥),0 < y < a (0 < &£ « 1) where f(y) is a bounded and continuous function with f@ =0
and below by a plane bottom y = a so that y = 0,x > 0 is the unimpeded free surface.

As usual assumption of the lincarized water wave theory is adopted and the motion is irrotational, which ensure the existence of
a velocity potential

@(x,y,t) = Re[¢p(x, y)exp(—iwt)]

where o is the circular frequency of the incident waves. Thus the problem under consideration can be investigated by way of
determining the potential function ¢(x, y), satisfying the following boundary value problem (BVP):

() The equation of continuity generates Laplace’s equation:

V2¢ = 0 in the fluid region. 2.1
(i1) The Linearized structure of kinematic condition at the free surface:

K¢ + ¢, + Mep,,, =0ony=0,x >0, (2.2)

where K = w?/g and M = t/(pg); T is the coefficient of surface tension, g is the acceleration due to gravity and p is the density
of the liquid.

(iii) Rigid body condition:

, (2.3)
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Further ¢ is also required to satisfy the following:

coshyq(a — coshygy(a —
_coshy,( y)exp(_iyox) o piostiyslacy)

] 2.5
coshyya coshyoa exp(iyox) asx — o (2.5)

%exp (—iygx) is normally incident from positive infinity on the bended plate,
0

R is the reflection coefficient and y, is the unique real positive root of the transcendental equation (cf.[5])
x(1+ Mx?)tanhax — K = 0.

where a train of surface waves narrated by

As the parameter ¢ is very small, thus neglecting O(£?) terms, the boundary condition (2.3) can be approximately expressed on
x = 0 as (cf. [12],[13])

d
$:(0,y) = ed—y{f(v) $,(0,y)} for 0<y<a. (2.6)

III. SOLUTION BY PERTURBATION METHOD
The approximate boundary condition (2.6) suggests that we may adopt perturbational expansion in terms of the small parameter
¢ for the function ¢ (x, y) and the unknown constant R respectively as

¢(x,y:€) = po(x,y) + £¢1(x,¥) + 0(£?) }

R(g) = Ry + €Ry + 0(?). 3.1

Present analysis is confined with the determination of ¢, Ry and ¢, R;, as we are atiracted in evaluating only the corrections to
the velocity potential and reflection coefficient up to first order. Substituting the expansion (3.1) into the equations (2.1), (2.2),

(2.4), (2.5) and (2.6) and equating the coefficients of identical powers of £° and £ on both sides, we see that the functions ¢ and
¢, must be the solution of the foliowing two independent BVPs:

BVP-I: The function ¢, satisfies
V2¢o = 0 in the fluid region,
K¢y + ¢oy +M¢oyyy =0ony=0,x>0,
¢o, =0onx=0,0<y<a,
¢>0y =0ony=a,

coshyy(a —y) (etyd) +R coshyy(a —y) i
Stk Lot st ) L huaretell {0 gl s > oo,
Soshiyod exp(—iyox) + R, G exp(iygx) asx

¢

Obviously,
_ 2coshyy(a—y)

¢ cosh yoa

COSYoX 3.2)

so that we find Ry = 1.
BVP-II: The function ¢, satisfies
VZ¢, = 0 in the fluid region

K¢y + ¢y, + Mgy, =0 ony=0x>0,
d
$1, = E{f(y)¢gy} onx=00<y<a, (3.3)

¢1y=00ny=a,

coshyg(a—y) i)
Spn e vele e g =3 00;
i~ aha exp(iyox) asx

Assume that

(3.4)
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By Havelock’s expansion [1], ¢, (x, y) has the representation

coshyo(a —y)
coshypa

B(x,) =Ry exp(iYox) + ) Bacos yu(@ — y)exp(—ypx) 3:6)

where the summation extends over the real positive roots of K + x(1 — Mx?) tanka = 0.
Exploiting the boundary condition (3.5) we find

cosh yy(a —

. y)
g = iyeR, e _ZYan cosyn(a—y)
n

so that following Rhodes-Robinson[8] we have

—4i(1 + My3) coshy,a foa g{x)ceshyyla —x) dx
2yoa(l + My3) + (1 + 3My2) sinh 2y,a

1=

3.7
and

—4(1 — My3) foa g(x) cosyp(a —x) dx 38)
2ypa(l — My3) + (1 —3My2) sin 2y,a’ :

Thus R, and B, are found when f(y) is known and hence we find the general expression for R, and ¢, the first order
corrections to the reflection co-efficient R and velocity potential ¢, in presence of surface tension.

n =

IV. SPECIAL SHAPES OF THE BENDED PLATE

To illustraté the results obtained here, we consider the following two particular shapes of the bended plate:
Dfy)=yexp(-iy),0<y<a

Noting (3.2), we have
_ _ 2coshyy(a—y)
$0(0,y) = e (4.1)
Using (4.1) into (3.4) we find
2yoexp(—21y) E
9() =— onyoa_ [(@ — 2y)sinh ys(a — y) — yoy coshyo(a — y)]
so that from (3.7) and (3.8) we obtain
R —4iy5(1+ MYO)
o8 {2y0a(1 + My3) + (1 + 3My2) sinh 2y,a}(A2 — 4y2)?
4]
[ e (22 — 4v3)? + 8yZexp(—Aa) — (A% + 4y2) cosh 2y,a + 44y, sinh ZyoaJ
and
T 4y,(1 — My})exp(—Aa)
" coshy,a {Zyna(l — My2) + (1 — 3My2) sin 2y,a}
Y
[ A+ a4 v +72) - 2
/1 = YD )
_m{u —Yo)al(A —vo)* +v2) — 2v3}

Ynexp{(1 + v,)a} .

W{ZU + Y0)Yn €0SYna — (A + Y,)* — v3)sin y,a}

Ynexp{(A — yo)a}

W;—}z{ (A = Yo)Yncos yna — {(2 — y,)* — yA)sin Yna}]

n
ii) f(y) = csinh(Ay),0<y<a
Using (4.1) into (3.4) we find
9 = m [(2 — vo) sinh{(Z — v0)¥ + Yoa} — (A + yo) sinh{(A + yo)y — vea}]
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B —4icy,(1 + My3) . Ay cosh 2yea — (2 + Ay, — 4v}) cosh Aa]
17 2y,a(1 + My2) + (1 + 3My2) sinh 2y,a 22 —4y2 |

>
8
(A%

8cAyoyn (1 — My3) : ’ - "
B, = Z o';h = == {2yna(l — My2) + (1 — 3My2) sin 2y,a} H{(A — vo)? + V2 H(A +Yo)? +v2} !
0

X [2yq(cosh Aa — cosh yya cos y,a) + (A2 — 4y3 + y2) sinh yya siny,a]

V. DISCUSSION

A simple perturbation technique along with the application of Havelock’s expansion is employed here to find the first order
corrections to the reflection coefficient and velocity potential for the reflection of surface water waves incident on a bended plate
in finite depth of water, in presence of surface tension at the free surface. Analytical expressions for these corrections are also
obtained by assuming two particular shape of the bended plate viz.(i)f (¥) = yexp(—4y),0 <y < a (ii)f(y) = csinhy,0 <
y<a.

It should be noted here that in absence of surface tension effect, the approximate solution of the corresponding problem can be
found, by the substitution of 7 = 0. The problem discussed in the present paper seems to have some applications in coastal design
criteria and to derive the solution of the problem considered here, total reflection of waves by the bended plate is assumed since
there is no mechanism to absorb the incoming energy in the inviscid fluid system. Thus the reflection of waves is a physically
possible phenomenon in any nondissipating system.
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